سرامیک، تحولی در ابر رساناها
-
فروشگاه اینترنتی کارا
۱۳۹۵/۱۲/۱۰
حدود 70 سال پیشرفتهای انجام شده برای افزایش دمای بحرانی به کندی انجام گرفت. از سال 1911 تا سال 1973 یعنی حدود 62 سال دانشمندان تنها توانستند دمای بحرانی را از 4 درجه به 3/23 درجه کلوین که کمی بیشتر 3/20 کلوین یعنی دمای ئیدروژن مایع است برسانند اما کار با ئیدروژن مایع نیز پرهزینه، مشکلآفرین و خطرساز بود و کاربردهای ابررسانا را محدود میساخت. در سالهای بعد علاوه بر فلزات و آلیاژهای فلزی، فعالیتهایی در زمینه ترکیبات نیمهفلزی توسط برخی دانشمندان آغاز شد اما هنوز مادهای دیگری به جز فلزات و آلیاژها یافته نشده بود که بتواند در دماهای مورد انتظار ابررسانا باشد. سرانجام در 27 ژانویه سال 1986 جرج بدنورز و آلکس مولر در مؤسسه تحقیقاتی IBM شهر زوریخ سوئیس موفق به کشف پدیدة ابررسانایی در سرامیکی از نوع اکسید مس و شامل لانتانوم و باریوم شدند. دمای بحرانی نمونه ساخته شده، حدود 35 درجه کلوین بود و آنها نیز به خاطر کشف ابررساناهای دمابالا (HTS) موفق به دریافت جایزة نوبل در سال 1987 شدند. طی مدت زمان کوتاهی پس از کشف ابررسانایی دما بالا، دسترسی به دماهای بحرانی بالاتر به سرعت توسعه یافت. یک ماه بعد از کشف بدنورز و مولر، تاناکا و همکاران وی در توکیو نتایج آنها را تأیید نمودند و نتایج فعالیت آنها در یکی از نشریات ژاپنی به چاپ رسید. اندکی بعد از کشف اکسید مس حاوی باریوم و لانتانوم، در نتیجه همکاری پاول چو از دانشگاه هوستون و مانگ کنگ وو از دانشگاه آلاباما، عضو جدیدی از خانواده مواد ابررساناهای دما بالا با جایگزینی ایتریوم Y به جای لانتانوم کشف شد. این ماده سرامیکی که دمای بحرانی آن به 92 درجه کلوین میرسید، به YBCO معروف شد. با توجه به نقطه جوش نیتروژن که 77 درجه کلوین در فشار یک اتمسفر است، برای سرد شدن این ابررسانا تا دمای بحرانی استفاده از نیتروژن مایع هم امکانپذیر بود که بسیار ارزانتر و بیخطرتر از ئیدروژن و هلیم مایع بود. بنابراین فقط در طی یک سال از کشف اصلی، دمای انتقال به حالت ابررسانایی افزایش سه برابر داشت و واضح بود که انقلاب ابررساناها شروع شده است. برای پاسداشت تحول مهمی که در علم فیزیک واقع شده بود، توسط انجمن فیزیکدانان آمریکایی در بعدازظهر یکی از روزهای مارس 1987 جشنی هم در نیویورک برگزار شد. این جشن 3000 شرکت کننده داشت و حدود 3000 نفر نیز این جشن را از طریق تلویزیون مدار بسته در خارج از محل اصلی تماشا کردند. در طول شش سال بعد، چند خانواده دیگر از ابررساناها کشف شدند که شامل ترکیبات شامل تولیوم (Tl) و جیوه (Hg) بوده و دارای حداکثر دمای بحرانی بیشتر از 120 درجه کلوین بودند. بالاترین مقدار تأیید شده دمای بحرانی در فشار معمولی یک اتمسفر، 135 درجه کلوین و متعلق به HgBa2Ca2Cu3O8 میباشد. به صورت تجربی معلوم شده است اگر ماده ابررسانا به صورت مکانیکی تحت فشار قرار گیرد، دمای بحرانی ابررسانا کمی تغییر میکند. در سال 1993، دمای بحرانی 165 درجه کلوین (108- درجه سانتیگراد) نیز در ترکیبی از اکسید مس و جیوه و البته تحت فشارهای خیلی بالا گزارش شد. همگی ابررساناهای مورد اشاره یک ویژگی مشترک داشتند. وجود سطوح تراز شامل اتمهای اکسیژن و مس که با مواد حامل بار برای سطوح تراز از یکدیگر جدا میشوند. با توجه به کاربردهای مختلف ابررساناها، بسیاری از تلاشها بر افزایش دمای عملکرد ابررساناها تا دستیابی به دمای اتاق متمرکز شده است.
هر چند دمای بحرانی ترکیبات جدید سرامیکی در حد قابل توجهی از دمای بحرانی مواد ابررسانای متعارف (فلزات و آلیاژها) بزرگتر است، به دلیل خصوصیات فیزیکی این مواد مانند شکنندگی و پایین بودن چگالی و جریان بحرانی کاربردهای این مواد هنوز در مرحلهی تحقیق است. اخیراً سعید سلطانیان به همراه یک گروه علمی به سرپرستی پروفسور شی زو دو در دانشگاه ولونگونگ استرالیا ابررسانایی ساختهاند که بالاترین رکورد را از نظر خواص مکانیکی در میان ابررسانا دارد. این ابررسانا به شکل سیم یا نواری از جنس دی برید منیزیم (MgB2) با پوششی از آهن است و امکان انعطاف برای ساخت تجهیزات مختلف الکتریکی را داراست.
ابررساناهای جدید عموماً سرامیکی و اکسیدهای فلزی ورقه ورقه هستند که در دمای اتاق مواد نسبتاً بیارزشی محسوب میشوند و البته کاربردهای متفاوتی نیز دارند. اکسیدهای فلزی ابررسانا در مقایسه با فلزات شامل کمی حامل بار معمولی هستند و داری خواص انیسوتوروپیک الکتریکی و مغناطیسی میباشند. این خواص به نحو قابل ملاحظهای حساس به محتوای اکسیژن میباشند. نمونههای ابررسانای موادی مانند YBa2Cu3O7 را یک دانشآموز دبیرستانی نیز میتواند در یک اجاق میکروویو تولید کند اما برای تشخیص خواص فیزیکی ذاتی، کریستالهای یکتایی با درجه خلوص بالا مورد نیاز است که فرآیند ساخت پیچیدهای دارند.
۲۷۵۹۸